
Development of a Vehicle Model/Simulation Evaluation Tool

J. Gavin Howe,
Jeffrey P. Chrstos - Systems Technology, Inc.
Richard Romano - RealTime Technologies, Inc.
James O'Kins - U.S. Army TACOM

maintaining the data needed, and including suggestions for reducin	completing and reviewing the collect g this burden, to Washington Headq ould be aware that notwithstanding a	ction of information. Send commer quarters Services, Directorate for In	ts regarding this burden estim formation Operations and Rep	ate or any other aspect oorts, 1215 Jefferson Da	avis Highway, Suite 1204, Arlington	
1. REPORT DATE 16 APR 2008		2. REPORT TYPE N/A		3. DATES COVI	ERED	
10 AFK 2006		IV/A		-		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
Development of a Vehicle Model/Simulation Evaluation Te			ſool	5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER	
J. Gavin Howe; Jeffrey P. Chrstos; Richard Romano; James O'Kins				5e. TASK NUMBER		
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000				8. PERFORMING ORGANIZATION REPORT NUMBER 18799		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S) 18799	
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	ion unlimited				
13. SUPPLEMENTARY No Presented at SAE contains color image	2008 World Congre	ess, April 14-17, 200	98, Detroit, Mich	igan, The or	iginal document	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 28	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

- > To evaluate vehicle simulation models, there is a need to compare simulation results to test data and/or results from higher fidelity simulations.
- > Several types of tests and/or maneuvers may need to be compared.
- > Military procurement requirements.
- ➤ A process/tool for evaluation of vehicle simulation models has been developed.

Evaluation Types

A thorough evaluation will include:

- Laboratory type tests weight distribution, kinematics and compliance, steering ratio, and other static measures.
- > Dynamic maneuvers handling, drive train, braking, ride, and obstacle types.

Historical Background

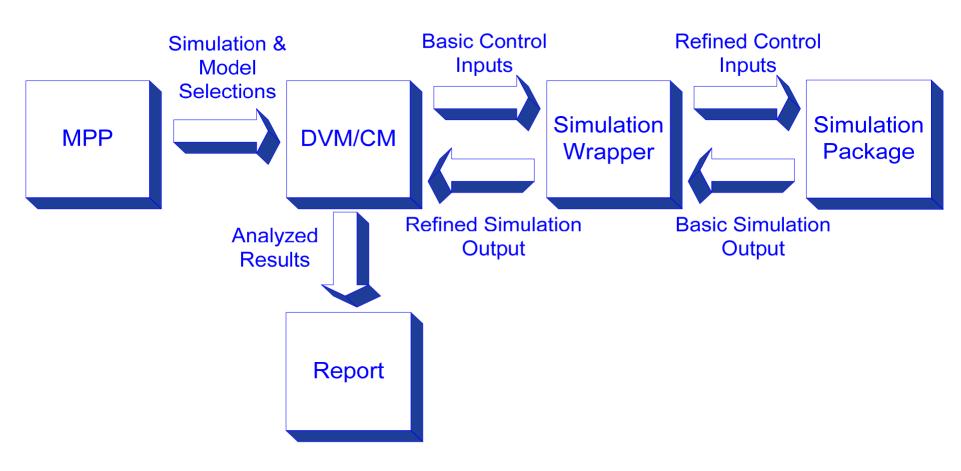
- ➤ In 1990, Heydinger, et. al. presented a methodology for validating vehicle dynamics simulation that compared vehicle simulation results to physical testing
 - "A... mathematical model... will be considered to be valid if, within some specified operating range of a system, a simulation's predictions of a system's responses of interest to specified input(s) agree with the actual physical system's responses to the same input(s) to within some specified level of accuracy"

Historical Background

- ➤ In 1994, Bernard and Clover suggested that three separate questions need to be addressed in the validation process:
 - ➤ Is the model appropriate for the vehicle and maneuver of interest?
 - > Is the simulation based on equations that faithfully replicate the model?
 - > Are the input parameters reasonable?

Model Post Processor (MPP)

- > This tool allows a vehicle dynamicist to evaluate simulations and/or models by:
 - > selecting vehicle models from a variety of simulation programs;
 - evaluating/comparing/contrasting models using static vehicle metrics;
 - > and evaluating models using dynamic vehicle maneuvers.



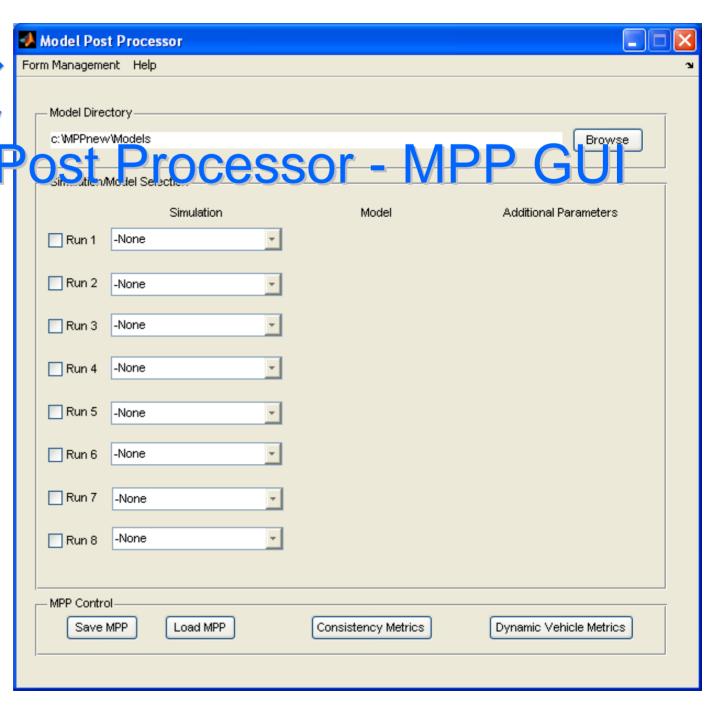
MPP Subcomponents

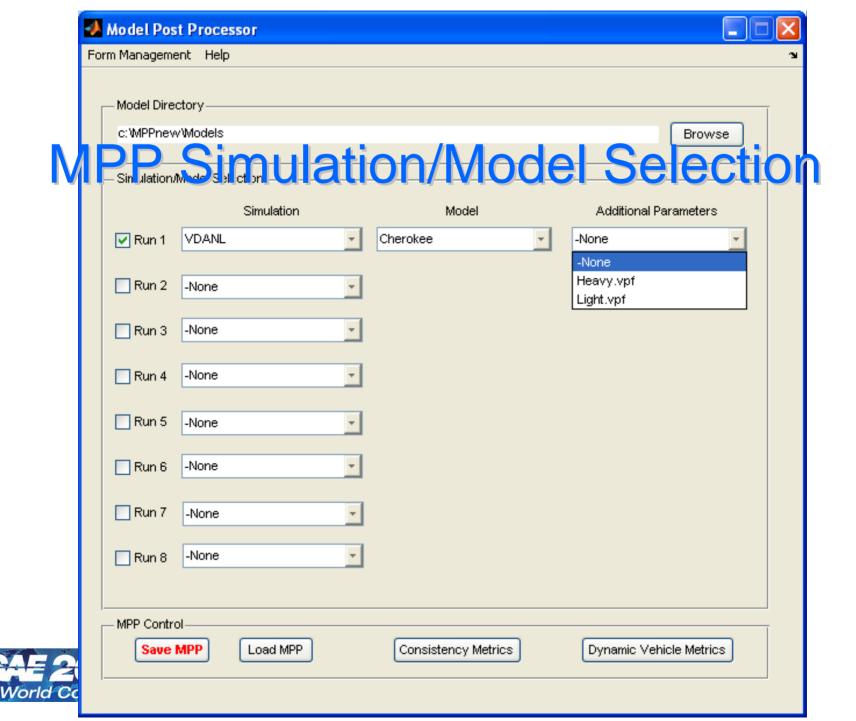
- Dynamic Vehicle Metrics (DVM) consists of a wide range of dynamic vehicle maneuvers
 - > Ride and handling, Braking, Acceleration, etc.
- Consistency Metrics (CM) consists of a set of quasi-static vehicle tests
 - > K and C, steering ratio, etc.

MPP Flow Diagram

Implementation Details

- Directory Structures
 - > Models, Simulation Results
- > File Naming Conventions
 - Maneuver/test results for each model
- Output Data Structures
 - > How are the results saved for consistency
- Command Files
 - > Steering, braking, throttle, speed, gear, etc.
- Simulation Wrappers
- Reporting Options
 - General output types; Maneuver/test specific output
- Data Shared Between the CM and DVM


Pull Down Menus >


Model Directory

Simulation/Model Selection →

Consistency Metrics (CM)

- A set of quasi-static tests used to evaluate a model
- Kinematics and Compliance (K & C) type tests
- Static test to determine weight distribution
- Steering Ratio test

Kinematics and Compliance

- > Kinematic Tests
 - vertical motions applied to the tire ground contacts to exercise the suspension
 - horizontal tire forces and moments are controlled to be zero
- Compliance Tests
 - lateral and longitudinal forces and aligning moments are applied to tire contact patches
 - > virtual ground plane is held fixed

CM List of Tests

- Static Test Weight Distribution
- > Kinematic Heave
- > Kinematic Roll
- Lateral Compliance
- Longitudinal In-Phase Compliance
- Out-of-Phase Compliance
- Aligning Moment Compliance
- Steering Ratio Test

CM Virtual Restraint System

- Consists of three linear spring/dampers and three rotary spring/dampers acting at the vehicle sprung center of gravity
- Linear spring stiffness set to allow 0.0254 mm (0.001 in) deflection under a load equal to the total vehicle weight
- Rotary springs set to allow 0.0254 mm (0.001 in) deflection when a load equal to the total vehicle weight is applied to a single wheel

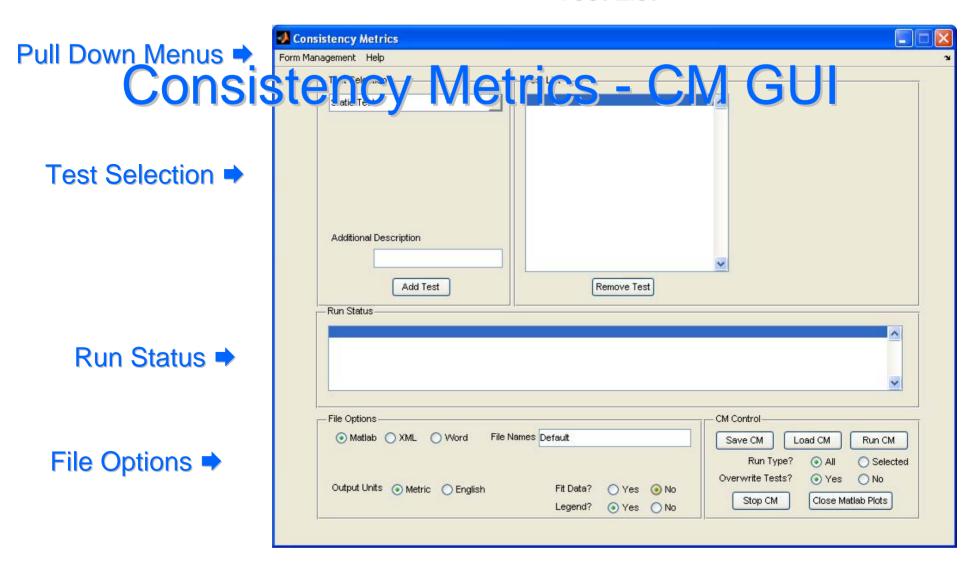
CM Virtual Restraint System – Springs

$$K_{x} = K_{y} = K_{z} = \frac{W \cdot MaxLoad}{\Delta_{max}} \quad \left(\frac{N}{m}\right)$$

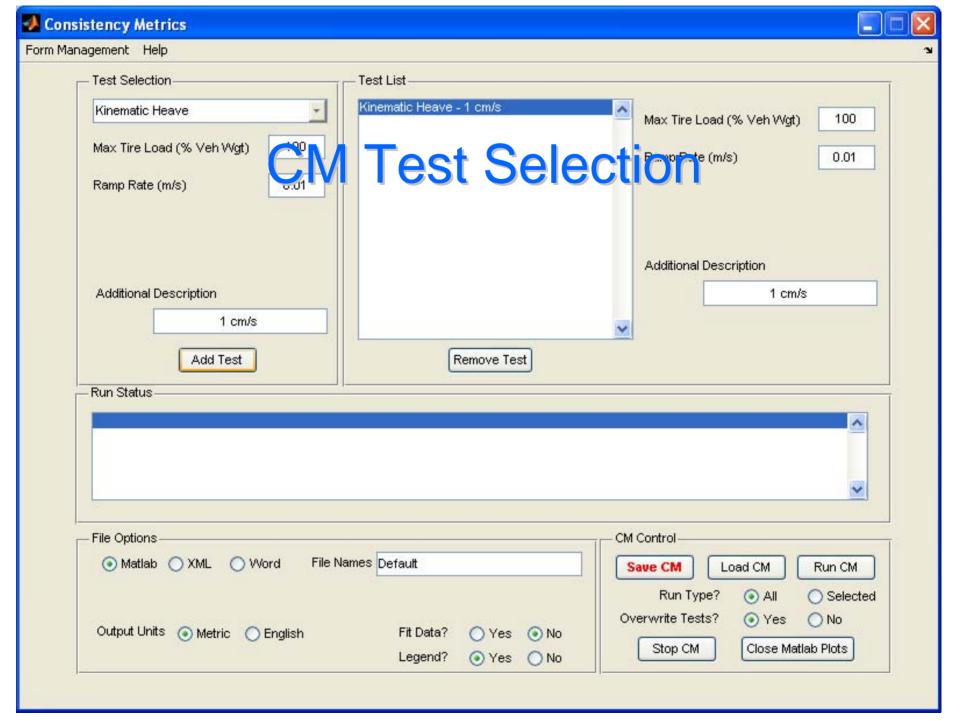
$$W \cdot MaxLoad \cdot 0.5 \cdot TW \quad \left(N \cdot m\right)$$

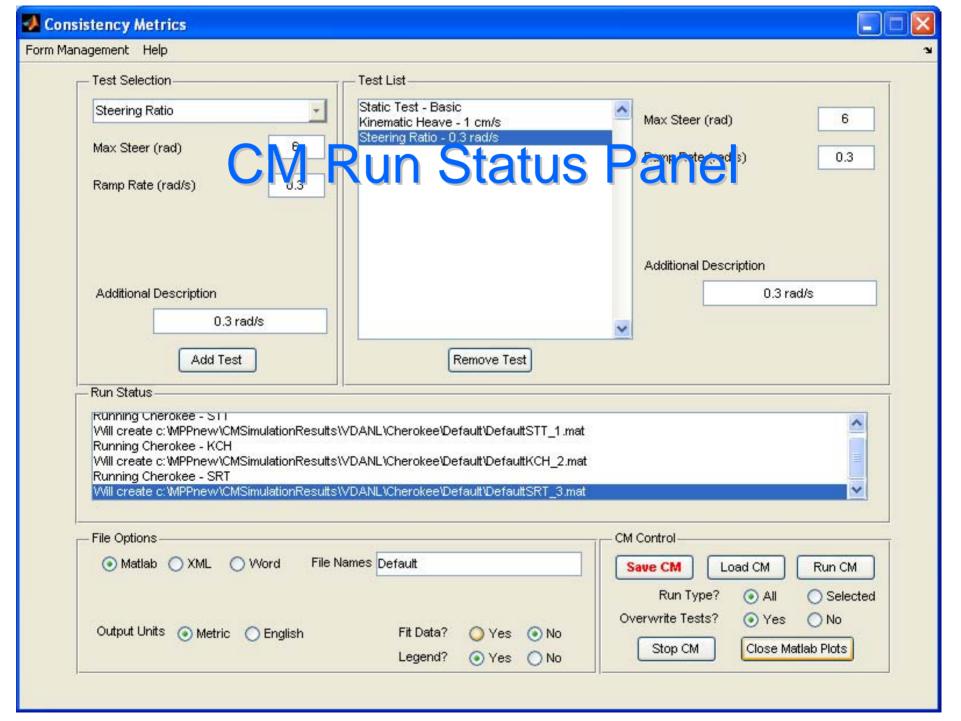
$$Km_{x} = \frac{W \cdot MaxLoad \cdot 0.5 \cdot TW}{\tan^{-1} \left(\frac{\Delta_{\max}}{0.5 \cdot TW}\right)} \quad \left(\frac{N \cdot m}{rad}\right)$$

$$Km_y = Km_z = \frac{W \cdot MaxLoad \cdot A}{\tan^{-1} \left(\frac{\Delta_{max}}{A}\right)} \quad \left(\frac{N \cdot m}{rad}\right)$$


$$\left(\frac{N\cdot m}{rad}\right)$$

$$\left(\frac{N \cdot m}{rad}\right)$$


Variable	Description	Units
K_{x}	Longitudinal restraint stiffness	N/m
K_{y}	Lateral restraint stiffness	N/m
K_z	Vertical restraint stiffness	N/m
W	Total vehicle weight	N
MaxLoad	Multiplier of total weight to set maximum applied load	-
$\Delta_{ m max}$	Allowable deflection at max loading	m
Km_x	Rotary stiffness about longitudinal axis	Nm/rad
Km _y	Rotary stiffness about lateral axis	Nm/rad
Km_z	Rotary stiffness about vertical axis	Nm/rad
TW	Front axle track width	m
A	Distance from sprung c.g. to front axle	m


Test List **₹**

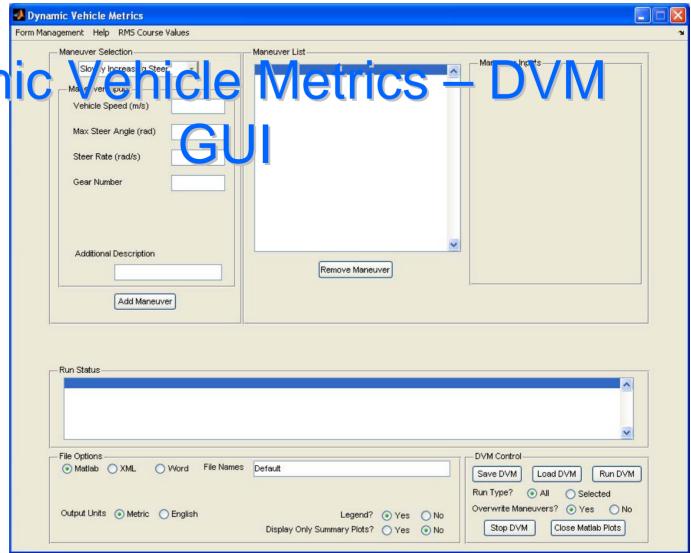
Dynamic Vehicle Metrics (DVM)

- ➤ A set of dynamic vehicle tests that are used to assess powertrain, braking, handling, and ride performance
- Steering, brake, and throttle/speed vehicle inputs
- Terrain profile for ride type tests
- > Hitch force for Drawbar test

DVM Maneuvers

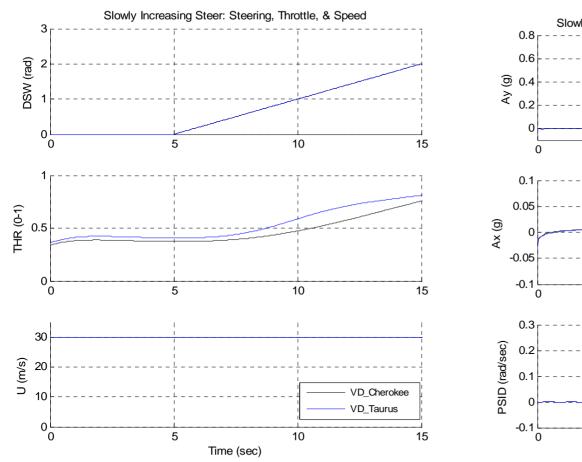
- Slowly Increasing Steer, J-Turn, Swept Sine, Fishhook
- Straight Line Acceleration/Deceleration
- Straight Line and Slowly Increasing Brake
- Trapezoidal Bump, Pothole, Half Round, Washboard, RMS Course
- > Drawbar Pull

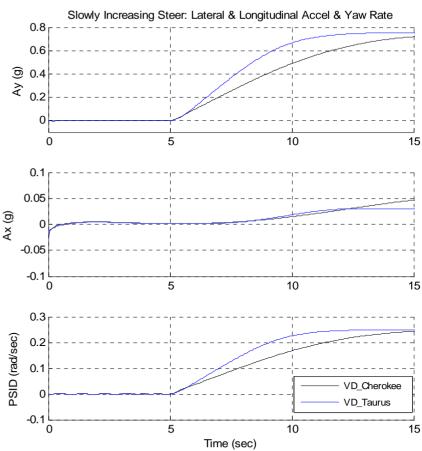
Maneuver List **♣**

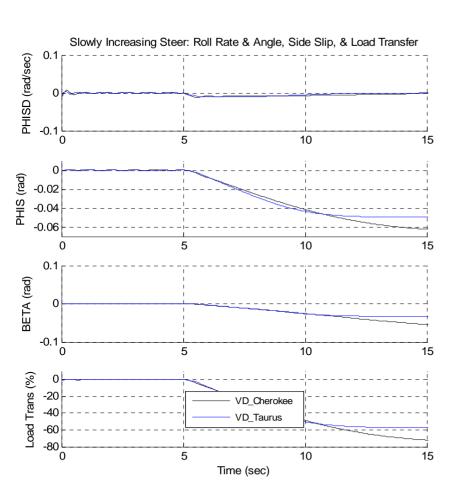

Pull Down Menus

Dynamic

Maneuver Selection →


Run Status →


File Options →



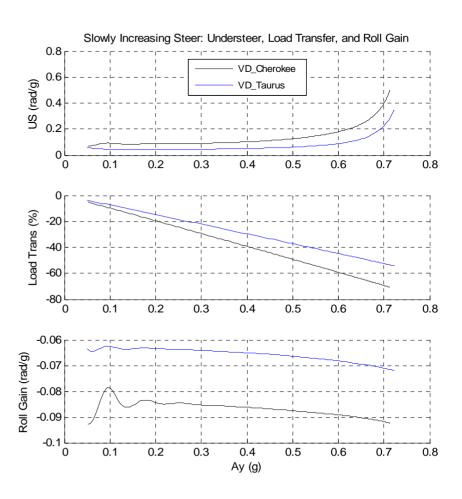


Table 1 - Understeer Gradient at Various Lateral Accelerations

	VD_Cherokee	VD_Taurus	
Lateral Acceleration	Understeer Gradient	Understeer Gradient	
(g)	(rad/g)	(rad/g)	
0.1	0.0928	0.0451	
0.2	0.0870	0.0437	
0.3	0.0906	0.0452	
0.4	0.1013	0.0500	
0.5	0.1252	0.0605	
0.6	0.1790	0.0882	
0.7	0.4008	0.2243	

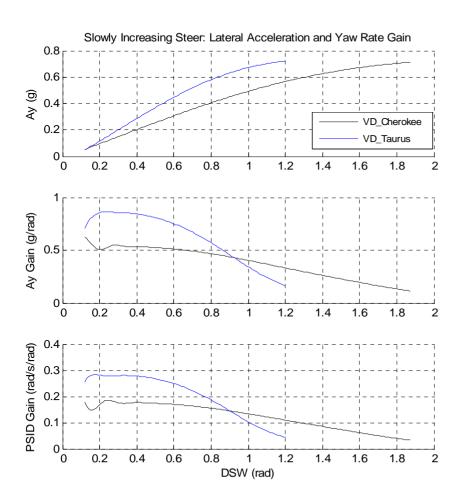


Table 5 - Lateral Acceleration Gain at Various Steering Wheel Angles

	VD_Cherokee	VD_Taurus	
Steering Wheel Angle	Lateral Acceleration Gain	Lateral Acceleration Gain	
(rad)	(g/rad)	(g/rad)	
0.5	0.5250	0.8083	
1.0	0.4036	0.3428	
1.5	0.2282	-	

Conclusions

- The development of a vehicle model/simulation evaluation tool was presented (MPP).
- > Simulation/models can be evaluated using static vehicle metrics (CM).
- > Simulation/models can be evaluated using dynamic vehicle maneuvers (DVM).
- > Allows comparison of:
 - > vehicle models for the same simulation;
 - > vehicle models for different simulations;
 - > vehicle models to physical test data.
- Results can be output to multiple formats.

